Senin, 23 Juni 2014

BIOINFORMATIKA



PENGERTIAN BIOINFORMATIKA
Bioinformatika, sesuai dengan asal katanya yaitu “bio” dan “informatika”, adalah gabungan antara ilmu biologi dan ilmu teknik informasi (TI). Pada umumnya, Bioinformatika didefenisikan sebagai aplikasi dari alat komputasi dan analisa untuk menangkap dan menginterpretasikan data-data biologi. Ilmu ini merupakan ilmu baru yang yang merangkup berbagai disiplin ilmu termasuk ilmu komputer, matematika dan fisika, biologi, dan ilmu kedokteran, dimana kesemuanya saling menunjang dan saling bermanfaat satu sama lainnya.

SEJARAH BIOINFORMATIKA
Istilah bioinformatics mulai dikemukakan pada pertengahan era 1980-an untuk mengacu pada penerapan komputer dalam biologi. Namun demikian, penerapan bidang-bidang dalam bioinformatika (seperti pembuatan basis data dan pengembangan algoritma untuk analisis sekuens biologis) sudah dilakukan sejak tahun 1960-an.
Kemajuan teknik biologi molekular dalam mengungkap sekuens biologis dari protein (sejak awal 1950-an) dan asam nukleat (sejak 1960-an) mengawali perkembangan basis data dan teknik analisis sekuens biologis. Basis data sekuens protein mulai dikembangkan pada tahun 1960-an di Amerika Serikat, sementara basis data sekuens DNA dikembangkan pada akhir 1970-an di Amerika Serikat dan Jerman (pada European Molecular Biology Laboratory, Laboratorium Biologi Molekular Eropa). Penemuan teknik sekuensing DNA yang lebih cepat pada pertengahan 1970-an menjadi landasan terjadinya ledakan jumlah sekuens DNA yang berhasil diungkapkan pada 1980-an dan 1990-an, menjadi salah satu pembuka jalan bagi proyek-proyek pengungkapan genom, meningkatkan kebutuhan akan pengelolaan dan analisis sekuens, dan pada akhirnya menyebabkan lahirnya bioinformatika. Perkembangan internet juga mendukung berkembangnya bioinformatika.
Basis data bioinformatika yang terhubung melalui internet memudahkan ilmuwan mengumpulkan hasil sekuensing ke dalam basis data tersebut maupun memperoleh sekuens biologis sebagai bahan analisis, Perkembangan teknologi DNA rekombinan memainkan peranan penting dalam lahirnya bioinformatika. Teknologi DNA rekombinan memunculkan suatu pengetahuan baru dalam rekayasa genetika organisme yang dikenala bioteknologi. Perkembangan bioteknologi dari bioteknologi tradisional ke bioteknologi modren salah satunya ditandainya dengan kemampuan manusia dalam melakukan analisis DNA organisme, sekuensing DNA dan manipulasi DNA. Sekuensing DNA satu organisme, misalnya suatu virus memiliki kurang lebih 5.000 nukleotida atau molekul DNA atau sekitar 11 gen, yang telah berhasil dibaca secara menyeluruh pada tahun 1977. Kemudia Sekuen seluruh DNA manusia terdiri dari 3 milyar nukleotida yang menyusun 100.000 gen dapat dipetakan dalam waktu 3 tahun, walaupun semua ini belum terlalu lengkap. Saat ini terdapat milyaran data nukleotida yang tersimpan dalam database DNA, GenBank di AS yang didirikan tahun 1982. Selain itu, penyebaran program-program aplikasi bioinformatika melalui internet memudahkan ilmuwan mengakses program-program tersebut dan kemudian memudahkan pengembangannya.

CABANG-CABANG YANG TERKAIT DENGAN BIOINFORMATIKA
Dari pengertian Bioinformatika yang telah dijelaskan, kita dapat menemukan banyak terdapat banyak cabang-cabang disiplin ilmu yang terkait dengan Bioinformatika, terutama karena bioinformatika itu sendiri merupakan suatu bidang interdisipliner. Hal tersebut menimbulkan banyak pilihan bagi orang yang ingin mendalami Bioinformatika.

Biophysics
Adalah sebuah bidang interdisipliner yang mengalikasikan teknik-teknik dari ilmu Fisika untuk memahami struktur dan fungsi biologi (British Biophysical Society). Disiplin ilmu ini terkait dengan Bioinformatika karena penggunaan teknik-teknik dari ilmu Fisika untuk memahami struktur membutuhkan penggunaan TI.

Computational Biology
Computational biology merupakan bagian dari Bioinformatika (dalam arti yang paling luas) yang paling dekat dengan bidang Biologi umum klasik. Fokus dari computational biology adalah gerak evolusi, populasi, dan biologi teoritis daripada biomedis dalam molekul dan sel.

Medical Informatics
Menurut Aamir Zakaria [ZAKARIA2004] Pengertian dari medical informatics adalah “sebuah disiplin ilmu yang baru yang didefinisikan sebagai pembelajaran, penemuan, dan implementasi dari struktur dan algoritma untuk meningkatkan komunikasi, pengertian dan manajemen informasi medis.” Medical informatics lebih memperhatikan struktur dan algoritma untuk pengolahan data medis, dibandingkan dengan data itu sendiri. Disiplin ilmu ini, untuk alasan praktis, kemungkinan besar berkaitan dengan data-data yang didapatkan pada level biologi yang lebih “rumit”.

Cheminformatics
Cheminformatics adalah kombinasi dari sintesis kimia, penyaringan biologis, dan pendekatan data-mining yang digunakan untuk penemuan dan pengembangan obat (Cambridge Healthech Institute’s Sixth Annual Cheminformatics conference). Kemungkinan penggunaan TI untuk merencanakan secara cerdas dan dengan mengotomatiskan proses-proses yang terkait dengan sintesis kimiawi dari komponenkomponen pengobatan merupakan suatu prospek yang sangat menarik bagi ahli kimia dan ahli biokimia.

Genomics
Genomics adalah bidang ilmu yang ada sebelum selesainya sekuen genom, kecuali dalam bentuk yang paling kasar. Genomics adalah setiap usaha untukmenganalisa atau membandingkan seluruh komplemen genetik dari satu spesies atau lebih. Secara logis tentu saja mungkin untuk membandingkan genom-genom dengan membandingkan kurang lebih suatu himpunan bagian dari gen di dalam genom yang representatif.

Mathematical Biology
Mathematical biology juga menangani masalah-masalah biologi, namun metode yang digunakan untuk menangani masalah tersebut tidak perlu secara numerik dan tidak perlu diimplementasikan dalam software maupun hardware.
Menurut Alex Kasman [KASMAN2004] Secara umum mathematical biology melingkupi semua ketertarikan teoritis yang tidak perlu merupakan sesuatu yang beralgoritma, dan tidak perlu dalam bentuk molekul, dan tidak perlu berguna dalam menganalisis data yang terkumpul.

Proteomics
Istilah proteomics pertama kali digunakan untuk menggambarkan himpunan dari protein-protein yang tersusun (encoded) oleh genom. Michael J. Dunn [DUNN2004], mendefiniskan kata “proteome” sebagai: “The PROTEin complement of the genOME“. Dan mendefinisikan proteomics berkaitan dengan: “studi kuantitatif dan kualitatif dari ekspresi gen di level dari protein-protein fungsional itu sendiri”. Yaitu: “sebuah antarmuka antara biokimia protein dengan biologi molekul”.

Pharmacogenomics
Pharmacogenomics adalah aplikasi dari pendekatan genomik dan teknologi pada identifikasi dari target-target obat. Contohnya meliputi menjaring semua genom untuk penerima yang potensial dengan menggunakan cara Bioinformatika, atau dengan menyelidiki bentuk pola dari ekspresi gen di dalam baik patogen maupun induk selama terjadinya infeksi, atau maupun dengan memeriksa karakteristik pola-pola ekspresi yang ditemukan dalam tumor atau contoh dari pasien untuk kepentingan diagnosa (kemungkinan untuk mengejar target potensial terapi kanker).
Istilah pharmacogenomics digunakan lebih untuk urusan yang lebih “trivial” — tetapi dapat diargumentasikan lebih berguna– dari aplikasi pendekatan Bioinformatika pada pengkatalogan dan pemrosesan informasi yang berkaitan dengan ilmu Farmasi dan Genetika, untuk contohnya adalah pengumpulan informasi pasien dalam database.

Pharmacogenetics
Pharmacogenetics adalah bagian dari pharmacogenomics yang menggunakan metode genomik/Bioinformatika untuk mengidentifikasi hubungan-hubungan genomik, contohnya SNP (Single Nucleotide Polymorphisms), karakteristik dari profil respons pasien tertentu dan menggunakan informasi-informasi tersebut untuk memberitahu administrasi dan pengembangan terapi pengobatan.
Gambaran dari sebagian bidang-bidang yang terkait dengan Bioinformatika di atas memperlihatkan bahwa Bioinformatika mempunyai ruang lingkup yang sangat luas dan mempunyai peran yang sangat besar dalam bidangnya. Bahkan pada bidang pelayanan kesehatan Bioinformatika menimbulkan disiplin ilmu baru yang menyebabkan peningkatan pelayanan kesehatan.
IMPLEMENTASI BIOINFORMATIKA
Bioinformatika dalam Bidang Klinis
Bioinformatika dalam bidang klinis sering disebut sebagai informatika klinis( clinical informatics ). Aplikasi dari informatika klinis ini berbentuk manajemen data-dataklinis dari pasien melalui Electrical Medical Record  (EMR) yang dikembangkan olehClement J. McDonald dari Indiana University School of Medicine pada tahun 1972.McDonald pertama kali mengaplikasikan EMR pada 33 orang pasien penyakit gula(diabetes). Sekarang EMR ini telah diaplikasikan pada berbagai penyakit. Data yangdisimpan meliputi data analisa diagnosa laboratorium, hasil konsultasi dan saran, fotorontgen, ukuran detak jantung, dan lain lain. Dengan data ini dokter akan bisa menentukan obat yang sesuai dengan kondisi pasien tertentu dan lebih jauh lagi, dengandibacanya genom manusia, akan memungkinkan untuk mengetahui penyakit genetik seseorang, sehingga penanganan terhadap pasien menjadi lebih akurat menentukan obat yang sesuai dengan kondisi pasien tertentu dan lebih jauh lagi, dengan dibacanya genom manusia, akan memungkinkan untuk mengetahui penyakit genetik seseorang, sehingga penanganan terhadap pasien menjadi lebih akurat.

Bioinformatika untuk Identifikasi Agent  Penyakit Baru
Bioinformatika juga menyediakan tool yang sangat penting untuk identifikasi agent penyakit yang belum dikenal penyebabnya. Banyak sekali penyakit baru yangmuncul dalam dekade ini, dan diantaranya yang masih hangat adalah SARS (SevereAcute Respiratory Syndrome).Pada awalnya, penyakit ini diperkirakan disebabkan oleh virus influenza karenagejalanya mirip dengan gejala pengidap influenza. Akan tetapi ternyata dugaan ini salahkarena virus influenza tidak terisolasi dari pasien. Perkirakan lain penyakit ini disebabkanoleh bakteri Candida karena bakteri ini terisolasi dari beberapa pasien. Tapi perkiraan ini juga salah. Akhirnya ditemukan bahwa dari sebagian besar pasien SARS terisolasi virus Corona jika dilihat dari morfologinya. Sekuen genom virus ini kemudian dibaca dan darihasil analisa dikonfirmasikan bahwa penyebab SARS adalah virus Corona yang telah berubah (mutasi) dari virus Corona yang ada selama ini. Dalam rentetan proses ini, Bioinformatika memegang peranan penting. Pertama pada proses pembacaan genom virus Corona. Karena didatabase seperti GenBank,EMBL (European Molecular Biology Laboratory), dan DDBJ (DNA Data Bank of Japan) sudah tersedia data sekuen beberapa virus Corona, yang bisa digunakan untuk mendisain primer yang digunakan untuk amplifikasi DNA virus SARS ini. Software untuk mendisain primer juga tersedia, baik yang gratis maupun yang komersial.
Contoh yang gratis adalah Webprimer  yang disediakan oleh Stanford Genomic Resources:
GeneWalker yang disediakan oleh Cybergene AB:
Untuk yang komersial ada Primer Disainer  yang dikembangkan olehScientific & Education Software, dan software-software untuk analisa DNA lainnya seperti Sequencher (GeneCodes Corp.), SeqMan II  (DNA STAR Inc.), Genetyx (GENETYX Corp.), DNASIS (HITACHI Software), dan lain lain.
Kedua pada proses mencari kemiripan sekuen ( homology alignment ) virus yang didapatkan dengan virus lainnya. Dari hasil analisa virus SARS diketahui bahwa genomvirus Corona penyebab SARS berbeda dengan virus Corona lainnya.
Perbedaan ini diketahui dengan menggunakan homology alignment  dari sekuen virus SARS. Selanjutnya, Bioinformatika juga berfungsi untuk analisa posisi sejauh mana suatu virus berbeda dengan virus lainnya.

Bioinformatika untuk Diagnosa Penyakit Baru
Untuk menangani penyakit baru diperlukan diagnosa yang akurat sehingga dapat dibedakan dengan penyakit lain. Diagnosa yang akurat ini sangat diperlukan untuk pemberian obat dan perawatan yang tepat bagi pasien.
Ada beberapa cara untuk mendiagnosa suatu penyakit, antara lain: isolasi agent penyebab penyakit tersebut dan analisa morfologinya, deteksi antibodi yang dihasilkan dari infeksi dengan teknik  enzyme - linked immunosorbent assay (ELISA), dan deteksi gendari agent pembawa penyakit tersebut dengan Polymerase Chain Reaction (PCR). Teknik yang banyak dan lazim dipakai saat ini adalah teknik PCR. Teknik ini sederhana, praktis dan cepat. Yang penting dalam teknik PCR adalah didesign primer untuk amplifikasi DNA, yang memerlukan data sekuen dari genom agent yang bersangkutan dan software seperti yang telah diuraikan di atas. Disinilah  Bioinformatika memainkan peranannya. Untuk agent  yang mempunyai genom RNA, harus dilakukan reversetran scription (proses sintesa DNA dari RNA) terlebih dahulu dengan menggunakan enzim reverse transcriptase. Setelah DNA diperoleh baru dilakukan PCR. Reversetranscription dan PCR ini bisa dilakukan sekaligus dan biasanya dinamakan RT-PCR.Teknik PCR ini bersifat kualitatif, oleh sebab itu sejak beberapa tahun yang lalu dikembangkan teknik lain, yaitu Real Time PCR yang bersifat kuantitatif.
Dari hasil Real Time PCR ini bisa ditentukan  kuantitas suatu agent di dalam tubuh seseorang, sehingga bisa dievaluasi tingkat emergensinya. Pada Real Time PCR ini selain primer diperlukan probe yang harus didisain sesuai dengan sekuen agent  yang bersangkutan. Di sini jugadiperlukan software atau program Bioinformatika.

Bioinformatika untuk Penemuan Obat
Cara untuk menemukan obat biasanya dilakukan dengan menemukan zat/senyawayang dapat menekan perkembangbiakan suatu agent  penyebab penyakit. Karena perkembangbiakan agent  tersebut dipengaruhi oleh banyak faktor, maka faktor-faktor inilah yang dijadikan target. Diantaranya adalah enzim-enzim yang diperlukan untuk perkembangbiakan suatu agent
Mula-mula yang harus dilakukan adalah analisa struktur dan fungsi enzim-enzim tersebut. Kemudian mencari atau mensintesa zat/senyawa yangdapat menekan fungsi dari enzim-enzim tersebut.Analisa struktur dan fungsi enzim ini dilakukan dengan cara mengganti asamamino tertentu dan menguji efeknya. Analisa penggantian asam amino ini dahulu dilakukan secara random sehingga memerlukan waktu yang lama. Setelah Bioinformatika berkembang, data-data protein yang sudah dianalisa bebas diakses oleh siapapun, baik data sekuen asam amino-nya seperti yang ada di SWISS-PROT (http://www.ebi.ac.uk/swissprot/) maupun struktur 3D-nya yang tersedia di Protein DataBank (PDB) (http://www.rcsb.org/pdb/) .
Dengan database yang tersedia ini, enzim yang baru ditemukan dapat dibandingkan sekuen asam amino-nya, sehingga bisa diperkirakanasam amino yang berperan untuk aktivitas (active site) dan kestabilan enzim tersebut.Setelah asam amino yang berperan sebagai active site dan kestabilan enzimtersebut ditemukan, kemudian dicari atau disintesa senyawa yang dapat berinteraksidengan asam amino tersebut. Dengan data yang ada di PDB, maka dapat dilihat struktur 3D suatu enzim termasuk active site-nya, sehingga bisa diperkirakan bentuk senyawayang akan berinteraksi dengan active site tersebut. Dengan demikian, kita cukupmensintesa senyawa yang diperkirakan akan berinteraksi, sehingga obat terhadap suatu penyakit akan jauh lebih cepat ditemukan. Cara ini dinamakan “docking” dan telah banyak digunakan oleh perusahaan farmasi untuk penemuan obat baru.Meskipun dengan Bioinformatika ini dapat diperkirakan senyawa yang berinteraksi dan menekan fungsi suatu enzim, namun hasilnya harus dikonfirmasi dahulumelalui eksperimen di laboratorium. Akan tetapi dengan Bioinformatika, semua prosesini bisa dilakukan lebih cepat sehingga lebih efisien baik dari segi waktu maupun finansial.
Tahun 1997, Ian Wilmut dari Roslin Institute dan PPL Therapeutics Ltd,Edinburgh, Skotlandia, berhasil mengklon gen manusia yang menghasilkan faktor IX(faktor pembekuan darah), dan memasukkan ke kromosom biri-biri. Diharapkan biri-biriyang selnya mengandung gen manusia faktor IX akan menghasilkan susu yangmengandung faktor pembekuan darah. Jika berhasil diproduksi dalam jumlah banyak maka faktor IX yang diisolasi dari susu harganya bisa lebih murah untuk membantu para penderita hemofilia.

Nama Kelompok         :
Firda Chaerani            ( 52410794 )
Fitria Ariestasari          ( 52410844 )
Meity Dewinta N        ( 54410330 )

Kelas   :
4IA14

Referensi :
http://ianspace.wordpress.com/2011/05/01/bioinformatika/
https://bioinformaticjbub.wordpress.com/2010/02/22/whats-bioinformatics/
http://www.umass.edu/microbio/chime/pe_beta/pe/protexpl/igloss.htm?q=microbio/chime/explorer/igloss.htm

Sabtu, 31 Mei 2014

Komputasi dan Parallel Processing


Pada tugas softskill sebelumnya saya mengulas tentang "Komputasi Modern" nah pada kesempatan kali ini saya akan membahas tentang “ Parallel Processing dan Hubungannya dengan Komputasi Modern”. Untuk lebih jelasnya mari kita simak ulasan berikut…
 

Komputasi
Komputasi dapat diartikan sebagai suatu cara untuk menemukan pemecahan masalah dari data input dengan menggunakan suatu algoritma. Awalnya komputasi dilakukan dengan cara manual yakni dengan kertas dan pena. Namun dewasa ini, sesuai dengan berkembangnya teknologi, komputasi telah dilakukan dengan menggunakan komputer untuk mempercepat proses perhitungannya.

Parallel Processing ( Pemprosesan Paralel )
Parallel Processing atau Pemrosesan Paralel adalah komputasi dua atau lebih tugas pada waktu bersamaan dengan tujuan untuk mempersingkat waktu penyelesaian tugas-tugas tersebut dengan cara mengoptimalkan resource pada sistem komputer yang ada untuk mencapai tujuan yang sama. Pemrosesan paralel dapat mempersingkat waktu ekseskusi suatu program dengan cara membagi suatu program menjadi bagian-bagian yang lebih kecil yang dapat dikerjakan pada masing-masing prosesor secara bersamaan.
Tujuan utama dari pemrosesan paralel adalah untuk meningkatkan performa komputasi. Semakin banyak hal yang bisa dilakukan secara bersamaan (dalam waktu yang sama), semakin banyak pekerjaan yang bisa diselesaikan.

Komputasi Paralel
Adalah salah satu teknik melakukan komputasi secara bersamaan dengan memanfaatkan beberapa komputer secara bersamaan. Biasanya diperlukan saat kapasitas yang diperlukan sangat besar, baik karena harus mengolah data dalam jumlah besar ataupun karena tuntutan proses komputasi yang banyak.
Tujuan dari komputasi parallel adalah meningkatkan kinerja komputer dalam menyelesaikan berbagai masalah. Dengan membagi sebuah masalah besar ke dalam beberapa masalah kecil, membuat kinerja menjadi cepat.

Model Komputasi
Terdapat 4 model komputasi yaitu :

  a. SISD
SISD (Single Instruction Single Data )  model hanya digunakan 1 processor saja. Oleh karena itu model ini bisa dikatakan sebagai model untuk komputasi tunggal. Sedangkan ketiga model lainnya merupakan komputasi paralel yang menggunakan beberapa processor.

 b.   SIMD
SIMD (Single Instruction Multiple Data)  menggunakan banyak processor dengan instruksi yang sama, namun setiap processor mengolah data yang berbeda.

 c.    MISD
MISD (Multiple Instruction Single Data) menggunakan banyak processor dengan setiap processor menggunakan instruksi yang berbeda namun mengolah data yang sama. Hal ini merupakan kebalikan dari model SIMD.


 d.    MIMD
MIMD (Multiple Instruction Multiple Data) menggunakan banyak processor dengan setiap processor memiliki instruksi yang berbeda dan mengolah data yang berbeda.


KESIMPULAN :
Mengapa kita perlu menggunakan komputasi pararel pada saat pengolahan data dalam jumlah yang besar? Karena dengan menggunakan komputasi parallel, kita dapat lebih menghemat waktu serta akurat dalam mengolah data yang jumlahnya cukup besar.

Hubungan antara Komputasi Modern dengan Parallel Processing

Komputasi Modern dengan Parallel Processing sangan berkaitan. Mengapa ?
Karena penggunaan parallel processing pada kinerja komputasi modern memanfaatkan beberapa komputer atau processor untuk memecahkan masalah yang ada, sehingga dapat dilakukan lebih cepat dari pada harus menggunakan satu komputer atau processor. Komputasi dengan paralel processing akan menggabungkan beberapa CPU, dan membagi-bagi tugas untuk masing-masing CPU tersebut. Jadi, satu masalah terbagi-bagi penyelesaiannya. Perlu digaris bawahi, penggunaan komputasi dengan parallel processing lebih efektif digunakan untuk masalah yang besar. Namun jika masalah yang dihadapi kecil untuk penghematan cukup dengan menggunakan satu processor saja.


Fitria Ariestasari
(52410844) 
4IA14


Referensi :
http://id.wikipedia.org/wiki/Komputasi_paralel
http://www.gudangmateri.com/2009/12/pemrosesan-paralel.html
http://id.wikipedia.org/wiki/Komputasi